Chapter 8: Project Quality Management

Note: See the text itself for full citations.
Learning Objectives

- Understand the importance of project quality management for information technology products and services
- Define project quality management and understand how quality relates to various aspects of information technology projects
- Describe quality planning and its relationship to project scope management
- Discuss the importance of quality assurance
- Explain the main outputs of the quality control process
Learning Objectives (continued)

- Understand the tools and techniques for quality control, such as the Seven Basic Tools of Quality, statistical sampling, Six Sigma, and testing
- Summarize the contributions of noteworthy quality experts to modern quality management
- Describe how leadership, the cost of quality, organizational influences, expectations, cultural differences, and maturity models relate to improving quality in information technology projects
- Discuss how software can assist in project quality management
The Importance of Project Quality Management

- Many people joke about the poor quality of IT products (see cars and computers joke on pages 292-293)
- People seem to accept systems being down occasionally or needing to reboot their PCs
- But quality is very important in many IT projects
What Went Wrong?

- In 1986, two hospital patients died after receiving fatal doses of radiation from a Therac 25 machine after a software problem caused the machine to ignore calibration data.

- In one of the biggest software errors in banking history, Chemical Bank mistakenly deducted about $15 million from more than 100,000 customer accounts.

- In August 2008, the Privacy Rights Clearinghouse stated that more than 236 million data records of U.S. residents have been exposed due to security breaches since January 2005.
What Is Project Quality?

- The International Organization for Standardization (ISO) defines **quality** as “the degree to which a set of inherent characteristics fulfils requirements” (ISO9000:2000)

- Other experts define quality based on:
 - **Conformance to requirements**: the project’s processes and products meet written specifications
 - **Fitness for use**: a product can be used as it was intended
What Is Project Quality Management?

Project quality management ensures that the project will satisfy the needs for which it was undertaken.

Processes include:

- **Planning quality**: identifying which quality standards are relevant to the project and how to satisfy them; a **metric** is a standard of measurement.
- **Performing quality assurance**: periodically evaluating overall project performance to ensure the project will satisfy the relevant quality standards.
- **Performing quality control**: monitoring specific project results to ensure that they comply with the relevant quality standards.
Figure 8-1. Project Quality Management Summary

Planning
Process: Plan quality
Outputs: Quality management plan, quality metrics, quality checklists, process improvement plan, and project document updates

Executing
Process: Perform quality assurance
Outputs: Organizational process asset updates, change requests, project management plan updates, and project document updates

Monitoring and Controlling
Process: Perform quality control
Outputs: Quality control measurements, validated changes, validated deliverables, organizational process asset updates, change requests, project management plan updates, and project document updates

Project Start | Project Finish
Planning Quality

- Implies the ability to anticipate situations and prepare actions to bring about the desired outcome

- Important to prevent defects by:
 - Selecting proper materials
 - Training and indoctrinating people in quality
 - Planning a process that ensures the appropriate outcome
Design of Experiments

- **Design of experiments** is a quality planning technique that helps identify which variables have the most influence on the overall outcome of a process.

- Also applies to project management issues, such as cost and schedule trade-offs.

- Involves documenting important factors that directly contribute to meeting customer requirements.
Scope Aspects of IT Projects

- **Functionality** is the degree to which a system performs its intended function.
- **Features** are the system’s special characteristics that appeal to users.
- **System outputs** are the screens and reports the system generates.
- **Performance** addresses how well a product or service performs the customer’s intended use.
- **Reliability** is the ability of a product or service to perform as expected under normal conditions.
- **Maintainability** addresses the ease of performing maintenance on a product.
Who’s Responsible for the Quality of Projects?

- Project managers are ultimately responsible for quality management on their projects.

- Several organizations and references can help project managers and their teams understand quality:
 - International Organization for Standardization (www.iso.org)
 - IEEE (www.ieee.org)
Performing Quality Assurance

- **Quality assurance** includes all the activities related to satisfying the relevant quality standards for a project.

- Another goal of quality assurance is continuous quality improvement.

- **Benchmarking** generates ideas for quality improvements by comparing specific project practices or product characteristics to those of other projects or products within or outside the performing organization.

- A **quality audit** is a structured review of specific quality management activities that help identify lessons learned that could improve performance on current or future projects.
Quality Control

- The main outputs of quality control are:
 - Acceptance decisions
 - Rework
 - Process adjustments

- There are Seven Basic Tools of Quality that help in performing quality control
Cause-and-effect diagrams trace complaints about quality problems back to the responsible production operations.

They help you find the root cause of a problem.

Also known as fishbone or Ishikawa diagrams.

Can also use the 5 whys technique where you repeatedly ask the question “Why” (five is a good rule of thumb) to peel away the layers of symptoms that can lead to the root cause.
Figure 8-2. Sample Cause-and-Effect Diagram

- Training
 - User did not check box to save password
 - User keeps forgetting password
- User did not reset password
- System Hardware
- Software
 - Not enough memory
 - Not enough hard disk storage
- User’s Hardware
 - Processor too slow
- Problem: Users cannot get into system
Quality Control Charts

- A control chart is a graphic display of data that illustrates the results of a process over time.
- The main use of control charts is to prevent defects, rather than to detect or reject them.
- Quality control charts allow you to determine whether a process is in control or out of control.
 - When a process is in control, any variations in the results of the process are created by random events; processes that are in control do not need to be adjusted.
 - When a process is out of control, variations in the results of the process are caused by non-random events; you need to identify the causes of those non-random events and adjust the process to correct or eliminate them.
The Seven Run Rule

- You can use quality control charts and the seven run rule to look for patterns in data.

- The **seven run rule** states that if seven data points in a row are all below the mean, above the mean, or are all increasing or decreasing, then the process needs to be examined for non-random problems.
Figure 8-3. Sample Quality Control Chart
Run Chart

- A run chart displays the history and pattern of variation of a process over time
- It is a line chart that shows data points plotted in the order in which they occur
- Can be used to perform trend analysis to forecast future outcomes based on historical patterns
Figure 8-4. Sample Run Chart
Scatter Diagram

- A scatter diagram helps to show if there is a relationship between two variables.
- The closer data points are to a diagonal line, the more closely the two variables are related.
Figure 8-5. Sample Scatter Diagram
Histograms

- A histogram is a bar graph of a distribution of variables.
- Each bar represents an attribute or characteristic of a problem or situation, and the height of the bar represents its frequency.
Figure 8-6. Sample Histogram

![Histogram chart showing the number of complaints per week.](chart.png)
Pareto Charts

- A Pareto chart is a histogram that can help you identify and prioritize problem areas.

- Pareto analysis is also called the 80-20 rule, meaning that 80 percent of problems are often due to 20 percent of the causes.
Figure 8-7. Sample Pareto Chart

- Log-in problems
- System locks up
- System is too slow
- System is too hard to use
- Reports are inaccurate

Cumulative %

Number of complaints this week:

- 100%
- 90%
- 80%
- 70%
- 60%
- 50%
- 40%
- 30%
- 20%
- 10%
- 0%
Flowcharts

- Flowcharts are graphic displays of the logic and flow of processes that help you analyze how problems occur and how processes can be improved.
- They show activities, decision points, and the order of how information is processed.
Figure 8-8. Sample Flowchart

1. Deliverable Acceptance Request
2. Route to appropriate decision makers
3. Accepted?
 - YES: Sign approval section
 - NO: Document required additional work
4. Notify requestor and log in system
Statistical Sampling

- **Statistical sampling** involves choosing part of a population of interest for inspection.

- The size of a sample depends on how representative you want the sample to be.

- **Sample size formula:**

 \[
 \text{Sample size} = 0.25 \times \left(\frac{\text{certainty factor/acceptable error}}{\text{certainty factor/acceptable error}} \right)^2
 \]

- Be sure to consult with an expert when using statistical analysis.
Table 8-1. Commonly Used Certainty Factors

<table>
<thead>
<tr>
<th>Desired Certainty</th>
<th>Certainty Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>1.960</td>
</tr>
<tr>
<td>90%</td>
<td>1.645</td>
</tr>
<tr>
<td>80%</td>
<td>1.281</td>
</tr>
</tbody>
</table>
Six Sigma is “a comprehensive and flexible system for achieving, sustaining, and maximizing business success. Six Sigma is uniquely driven by close understanding of customer needs, disciplined use of facts, data, and statistical analysis, and diligent attention to managing, improving, and reinventing business processes.”*

Basic Information on Six Sigma

- The target for perfection is the achievement of no more than **3.4 defects per million opportunities**

- The principles can apply to a wide variety of processes

- Six Sigma projects normally follow a five-phase improvement process called DMAIC
DMAIC

- DMAIC is a systematic, closed-loop process for continued improvement that is scientific and fact based
- DMAIC stands for:
 - **Define**: define the problem/opportunity, process, and customer requirements
 - **Measure**: define measures, then collect, compile, and display data
 - **Analyze**: scrutinize process details to find improvement opportunities
 - **Improve**: generate solutions and ideas for improving the problem
 - **Control**: track and verify the stability of the improvements and the predictability of the solution
How Is Six Sigma Quality Control Unique?

- It requires an organization-wide commitment
- Training follows the “Belt” system
- Six Sigma organizations have the ability and willingness to adopt contrary objectives, such as reducing errors and getting things done faster
- It is an operating philosophy that is customer focused and strives to drive out waste, raise levels of quality, and improve financial performance at breakthrough levels
What Went Right?

- Motorola, Inc. pioneered the adoption of Six Sigma in the 1980s and saved about $14 billion.
- Allied Signal/Honeywell saved more than $600 million a year by reducing the costs of reworking defects and improving aircraft engine design processes.
- After implementing the solutions recommended by a Six Sigma team for Baptist St. Anthony's Hospital in Amarillo, Texas, the percent of delayed cases in the radiology department dropped from 79 percent to 33 percent, delays decreased by 22 percent, and the number of orders missing or needing clarification dropped to zero from 11 percent.
Joseph M. Juran stated, “All improvement takes place project by project, and in no other way”*

It’s important to select projects carefully and apply higher quality where it makes sense; companies that use Six Sigma do not always boost their stock values.

As Mikel Harry puts it, “I could genetically engineer a Six Sigma goat, but if a rodeo is the marketplace, people are still going to buy a Four Sigma horse”**

Six Sigma projects must focus on a quality problem or gap between the current and desired performance and not have a clearly understood problem or a predetermined solution.

*“What You Need to Know About Six Sigma,” *Productivity Digest* (December 2001), p. 38.

Six Sigma Projects Use Project Management

- The training for Six Sigma includes many project management concepts, tools, and techniques.

- For example, Six Sigma projects often use business cases, project charters, schedules, budgets, and so on.

- Six Sigma projects are done in teams; the project manager is often called the team leader, and the sponsor is called the champion.
Six Sigma and Statistics

- The term *sigma* means standard deviation

- **Standard deviation** measures how much variation exists in a distribution of data

- Standard deviation is a key factor in determining the acceptable number of defective units found in a population

- Six Sigma projects strive for no more than 3.4 defects per million opportunities, yet this number is confusing to many statisticians

Cleveland Institute of Electronics
Using a normal curve, if a process is at six sigma, there would be no more than two defective units per billion produced.

Six Sigma uses a scoring system that accounts for time, an important factor in determining process variations.

Yield represents the number of units handled correctly through the process steps.

A defect is any instance where the product or service fails to meet customer requirements.

There can be several opportunities to have a defect.
Figure 8-9. Normal Distribution and Standard Deviation

The normal curve
<table>
<thead>
<tr>
<th>SIGMA</th>
<th>YIELD</th>
<th>DEFECTS PER MILLION OPPORTUNITIES (DPMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.0%</td>
<td>690,000</td>
</tr>
<tr>
<td>2</td>
<td>69.2%</td>
<td>308,000</td>
</tr>
<tr>
<td>3</td>
<td>93.3%</td>
<td>66,800</td>
</tr>
<tr>
<td>4</td>
<td>99.4%</td>
<td>6,210</td>
</tr>
<tr>
<td>5</td>
<td>99.97%</td>
<td>230</td>
</tr>
<tr>
<td>6</td>
<td>99.99966%</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Six 9s of Quality

- **Six 9s of quality** is a measure of quality control equal to 1 fault in 1 million opportunities.

- In the telecommunications industry, it means 99.9999 percent service availability or 30 seconds of down time a year.

- This level of quality has also been stated as the target goal for the number of errors in a communications circuit, system failures, or errors in lines of code.
Many IT professionals think of testing as a stage that comes near the end of IT product development.

Testing should be done during almost every phase of the IT product development life cycle.
Figure 8-10. Testing Tasks in the Software Development Life Cycle
Types of Tests

- **Unit testing** tests each individual component (often a program) to ensure it is as defect-free as possible.

- **Integration testing** occurs between unit and system testing to test functionally grouped components.

- **System testing** tests the entire system as one entity.

- **User acceptance testing** is an independent test performed by end users prior to accepting the delivered system.
Watts S. Humphrey, a renowned expert on software quality, defines a **software defect** as anything that must be changed before delivery of the program.

Testing does not sufficiently prevent software defects because:

- The number of ways to test a complex system is huge.
- Users will continue to invent new ways to use a system that its developers never considered.

Humphrey suggests that people rethink the software development process to provide *no* potential defects when you enter system testing; developers must be responsible for providing error-free code at each stage of testing.
Modern Quality Management

- Modern quality management:
 - Requires customer satisfaction
 - Prefers prevention to inspection
 - Recognizes management responsibility for quality

- Noteworthy quality experts include Deming, Juran, Crosby, Ishikawa, Taguchi, and Feigenbaum
Quality Experts

- Deming was famous for his work in rebuilding Japan and his 14 Points for Management
- Juran wrote the *Quality Control Handbook* and ten steps to quality improvement
- Crosby wrote *Quality is Free* and suggested that organizations strive for zero defects
- Ishikawa developed the concepts of quality circles and fishbone diagrams
- Taguchi developed methods for optimizing the process of engineering experimentation
- Feigenbaum developed the concept of total quality control
Malcolm Baldrige Award

- The **Malcolm Baldrige National Quality Award** originated in 1987 to recognize companies that have achieved a level of world-class competition through quality management.
- Given by the President of the United States to U.S. businesses.
- Three awards each year in different categories:
 - Manufacturing
 - Service
 - Small business
 - Education and health care
ISO Standards

- **ISO 9000** is a quality system standard that:
 - Is a three-part, continuous cycle of planning, controlling, and documenting quality in an organization
 - Provides minimum requirements needed for an organization to meet its quality certification standards
 - Helps organizations around the world reduce costs and improve customer satisfaction

- See www.iso.org for more information
Suggestions for improving quality for IT projects include:

- Establish leadership that promotes quality
- Understand the cost of quality
- Focus on organizational influences and workplace factors that affect quality
- Follow maturity models
Leadership

- As Joseph M. Juran said in 1945, “It is most important that top management be quality-minded. In the absence of sincere manifestation of interest at the top, little will happen below.”*

- A large percentage of quality problems are associated with management, not technical issues

*American Society for Quality (ASQ), (www.asqc.org/about/history/juran.html).
The Cost of Quality

- The **cost of quality** is the cost of conformance plus the cost of nonconformance
 - **Conformance** means delivering products that meet requirements and fitness for use
 - **Cost of nonconformance** means taking responsibility for failures or not meeting quality expectations

- A study reported that software bugs cost the U.S. economy $59.6 billion each year and that one third of the bugs could be eliminated by an improved testing infrastructure
Five Cost Categories Related to Quality

- **Prevention cost**: cost of planning and executing a project so it is error-free or within an acceptable error range.

- **Appraisal cost**: cost of evaluating processes and their outputs to ensure quality.

- **Internal failure cost**: cost incurred to correct an identified defect before the customer receives the product.

- **External failure cost**: cost that relates to all errors not detected and corrected before delivery to the customer.

- **Measurement and test equipment costs**: capital cost of equipment used to perform prevention and appraisal activities.
A 2007 study by Nucleus Research Inc. estimated that spam management costs U.S. businesses more than $71 billion annually in lost productivity or $712 per employee.

One e-mail security firm estimated that spam accounts for 95 percent of total e-mail volume worldwide.

In 2008, Reuters reported that spyware and phishing cost consumers $7.1 billion in 2007, up from $2 billion the previous year.
Organizational Influences, Workplace Factors, and Quality

- Study by DeMarco and Lister showed that organizational issues had a much greater influence on programmer productivity than the technical environment or programming languages.
- Programmer productivity varied by a factor of one to ten across organizations, but only by 21 percent within the same organization.
- Study found no correlation between productivity and programming language, years of experience, or salary.
- A dedicated workspace and a quiet work environment were key factors to improving programmer productivity.
Expectations and Cultural Differences in Quality

- Project managers must understand and manage stakeholder expectations

- Expectations also vary by:
 - Organization’s culture
 - Geographic regions
Maturity Models

- **Maturity models** are frameworks for helping organizations improve their processes and systems
 - The *Software Quality Function Deployment Model* focuses on defining user requirements and planning software projects
 - The Software Engineering Institute’s *Capability Maturity Model Integration* is a process improvement approach that provides organizations with the essential elements of effective processes
CMMI Levels

- CMMI levels, from lowest to highest, are:
 - Incomplete
 - Performed
 - Managed
 - Defined
 - Quantitatively Managed
 - Optimizing

- Companies may not get to bid on government projects unless they have a CMMI Level 3
PMI’s Maturity Model

PMI released the Organizational Project Management Maturity Model (OPM3) in December 2003

Model is based on market research surveys sent to more than 30,000 project management professionals and incorporates 180 best practices and more than 2,400 capabilities, outcomes, and key performance indicators

Addresses standards for excellence in project, program, and portfolio management best practices and explains the capabilities necessary to achieve those best practices
Best Practice

OPM3 provides the following example to illustrate a best practice, capability, outcome, and key performance indicator:

- Best practice: establish internal project management communities
- Capability: facilitate project management activities
- Outcome: local initiatives, meaning the organization develops pockets of consensus around areas of special interest
- Key performance indicator: community addresses local issues
Using Software to Assist in Project Quality Management

- Spreadsheet and charting software helps create Pareto diagrams, fishbone diagrams, and so on
- Statistical software packages help perform statistical analysis
- Specialized software products help manage Six Sigma projects or create quality control charts
- Project management software helps create Gantt charts and other tools to help plan and track work related to quality management
Chapter Summary

- Project quality management ensures that the project will satisfy the needs for which it was undertaken

- Main processes include:
 - Plan quality
 - Perform quality assurance
 - Perform quality control