Network Analysis IV

Mesh Equations – Two Loops
Using the method of mesh currents, solve for all the unknown values of voltage and current in the figure shown. To do this, we will complete steps a through m.
Listing of steps

a. Identify the components through which the mesh current I_A flows.
b. Identify the components through which the mesh current I_B flows.
c. Which component has opposing mesh currents (if any)?
d. Write the mesh equation for mesh A.

e. Write the mesh equation for mesh B.

f. Solve for the currents I_A and I_B using any of the methods for the solution of simultaneous equations.
g. Determine the values of currents I_1, I_2 and I_3.

h. Are the assumed directions of mesh A and mesh B currents correct? How do you know?

i. What is the direction of current I_3 through R_3?

j. Solve for the voltage drops V_{R1}, V_{R2} and V_{R3}.
k. Using the final solutions for V_{R1}, V_{R2} and V_{R3}, write a KVL equation for the loop ACDBA going clockwise from point A.

l. Using the final solutions for V_{R1}, V_{R2} and V_{R3}, write a KVL equation for the loop EFDCE going clockwise from point E.

m. Using the final solutions (and directions) for I_1, I_2 and I_3, write a KCL equation for the currents at point C.
Step a solution

a. Identify the components through which the mesh current I_A flows.

- I_A flows through V_1, R_1 and R_3 (not necessarily in that order).
Step b solution

b. Identify the components through which the mesh current I_B flows.

- I_B flows through V_2, R_2 and R_3 (not necessarily in that order).
c. Which component has opposing mesh currents (if any)?

- The component with the opposing mesh currents is R_3 (down through R_3 from I_A and up through R_3 from I_B).
d. Write the mesh equation for mesh A.

\[20I_A - 10I_B = -40V \]
e. Write the mesh equation for mesh B.

- \(-10I_A + 25I_B = -20V\)
Step f solution

Original equations:

- Step d:
 \[20I_A - 10I_B = -40V \]

- Step e:
 \[-10I_A + 25I_B = -20V \]

f. Solve for the currents \(I_A \) and \(I_B \) using any of the methods for the solution of simultaneous equations.

- Step 1 ➔ Divide equation from step d by 2 (i.e. make values of \(I_A \) the same)
 \[10I_A - 5I_B = -20V \]
Step f solution (cont.)

• Step 2 ➔ Add equations

\[
\begin{align*}
10I_A - 5I_B &= -20V \\
-10I_A + 25I_B &= -20V \\
20I_B &= -40V
\end{align*}
\]
Step f solution (cont.)

• Step 3 ➞ Solve for I_B by dividing multiplier

\[
\frac{20I_B}{20} = \frac{-40}{20} \quad \therefore \quad I_B = -2A
\]
Step f solution (cont.)

- Step 4 ➔ Substitute I_B into either equation to solve for I_A (we will use one from step d)

$$20I_A - 10(-2A) = -40 \implies 20I_A + 20 = -40$$
Step f solution (cont.)

• Step 5 ➔ Move all the known to the right side, which will leave our unknown on the left

\[20I_A = -60 \]

• Step 6 ➔ Divide multiplier to solve for \(I_A \)

\[
\frac{20I_A}{20} = \frac{-60}{20} \quad \therefore \quad I_A = -3A
\]
Step g solution

g. Determine the values of currents I_1, I_2 and I_3.

- $I_1 = I_A = -3\,\text{A}$
- $I_2 = I_B = -2\,\text{A}$
- $I_3 = I_B - I_A = -2\,\text{A} - (-3\,\text{A}) = -2\,\text{A} + 3\,\text{A} = 1\,\text{A}$
Step h solution

h. Are the assumed directions of mesh A and mesh B currents correct? How do you know?

- The assumed currents are not correct as they are negative in value. The more appropriate statement would be a reversal of the current directions.
Step i solution

i. What is the direction of current I_3 through R_3?

• The overall direction of I_3 is up through R_3 (counterclockwise for mesh A and clockwise for mesh B)
Step j solution

- Solve for the voltage drops V_{R1}, V_{R2} and V_{R3}.

- $V_{R1} = I_1 R_1 = 3A(10\Omega) = 30V$
- $V_{R2} = I_2 R_2 = 2A(15\Omega) = 30V$
- $V_{R3} = I_3 R_3 = 1A(10\Omega) = 10V$
k. Using the final solutions for V_{R1}, V_{R2} and V_{R3}, write a KVL equation for the loop ACDBA going clockwise from point A.

$$30V + 10V - 40V = 0$$
Step I solution

I. Using the final solutions for V_{R1}, V_{R2} and V_{R3}, write a KVL equation for the loop EFDCE going clockwise from point E.

$$-20V - 10V + 30V = 0$$
Step m solution

• Using the final solutions (and directions) for I_1, I_2 and I_3, write a KCL equation for the currents at point C.

• $I_3 + I_2 = I_1$; this translates into the KCL equation

$$I_3 + I_2 - I_1 = 0 \implies 1A + 2A - 3A = 0$$

(I_3 and I_2 flow into node C, while I_1 flows out of node C).
The circuit with directions and voltage measurements

- V1: 40 V
- V2: 20 V
- R1: 10Ω
- R2: 15Ω
- R3: 10Ω
The End