Chapter 6:
Project Time Management

Information Technology Project Management, Sixth Edition

Note: See the text itself for full citations.
More courses at cie-wc.edu
Learning Objectives

- Understand the importance of project schedules and good project time management
- Define activities as the basis for developing project schedules
- Describe how project managers use network diagrams and dependencies to assist in activity sequencing
- Understand the relationship between estimating resources and project schedules
- Explain how various tools and techniques help project managers perform activity duration estimating
Learning Objectives (continued)

- Use a Gantt chart for planning and tracking schedule information, find the critical path for a project, and describe how critical chain scheduling and the Program Evaluation and Review Technique (PERT) affect schedule development.
- Discuss how reality checks and people issues are involved in controlling and managing changes to the project schedule.
- Describe how project management software can assist in project time management and review words of caution before using this software.
Importance of Project Schedules

- Managers often cite delivering projects on time as one of their biggest challenges.
- Time has the least amount of flexibility; it passes no matter what happens on a project.
- Schedule issues are the main reason for conflicts on projects, especially during the second half of projects.
Individual Work Styles and Cultural Differences Cause Schedule Conflicts

- One dimension of the Meyers-Briggs Type Indicator focuses on peoples’ attitudes toward structure and deadline
- Some people prefer to follow schedules and meet deadlines while others do not (J vs. P)
- Difference cultures and even entire countries have different attitudes about schedules
Media Snapshot

- In contrast to the 2002 Salt Lake City Winter Olympic Games (see Chapter 4’s Media Snapshot), planning and scheduling was very different for the 2004 Summer Olympic Games held in Athens, Greece.
- Many articles were written before the opening ceremonies predicting that the facilities would not be ready in time; many people were pleasantly surprised by the amazing opening ceremonies, beautiful new buildings, and state-of-the-art security and transportation systems in Athens.
- The Greeks even made fun of critics by having construction workers pretend to still be working as the ceremonies began.
Project Time Management Processes

- **Defining activities**: identifying the specific activities that the project team members and stakeholders must perform to produce the project deliverables
- **Sequencing activities**: identifying and documenting the relationships between project activities
- **Estimating activity resources**: estimating how many resources a project team should use to perform project activities
- **Estimating activity durations**: estimating the number of work periods that are needed to complete individual activities
- **Developing the schedule**: analyzing activity sequences, activity resource estimates, and activity duration estimates to create the project schedule
- **Controlling the schedule**: controlling and managing changes to the project schedule
Figure 6-1. Project Time Management Summary

Planning
- Process: Define activities
 - Outputs: Activity list, activity attributes, milestone list
- Process: Sequence activities
 - Outputs: Project schedule network diagrams, project document updates
- Process: Estimate activity resources
 - Outputs: Activity resource requirements, resource breakdown structure, project document updates
- Process: Estimate activity durations
 - Outputs: Activity duration estimates, project document updates
- Process: Develop schedule
 - Outputs: Project schedule, schedule baseline, schedule data, project document updates

Monitoring and Controlling
- Process: Control schedule
 - Outputs: Work performance measurements, organizational process assets updates, change requests, project management plan updates, project document updates

Project Start Project Finish
Defining Activities

- An **activity** or **task** is an element of work normally found on the work breakdown structure (WBS) that has an expected duration, a cost, and resource requirements.
- Activity definition involves developing a more detailed WBS and supporting explanations to understand all the work to be done so you can develop realistic cost and duration estimates.
Activity Lists and Attributes

- An **activity list** is a tabulation of activities to be included on a project schedule that includes:
 - The activity name
 - An activity identifier or number
 - A brief description of the activity

- **Activity attributes** provide more information such as predecessors, successors, logical relationships, leads and lags, resource requirements, constraints, imposed dates, and assumptions related to the activity
Milestones

- A **milestone** is a significant event that normally has no duration
- It often takes several activities and a lot of work to complete a milestone
- They’re useful tools for setting schedule goals and monitoring progress
- Examples include obtaining customer sign-off on key documents or completion of specific products
At the U.S. Federal Bureau of Investigation (FBI), poor time management was one of the reasons behind the failure of Trilogy, a “disastrous, unbelievably expensive piece of vaporware, which was more than four years in the (un)making. The system was supposed to enable FBI agents to integrate intelligence from isolated information silos within the Bureau.”

In May 2006, the Government Accounting Agency said that the Trilogy project failed at its core mission of improving the FBI’s investigative abilities and was plagued with missed milestones and escalating costs.

Roberts, Paul, “Frustrated contractor sentenced for hacking FBI to speed deployment,” InfoWorld Tech Watch, (July 6, 2006).
Sequencing Activities

- Involves reviewing activities and determining dependencies
- A **dependency** or **relationship** is the sequencing of project activities or tasks
- You **must** determine dependencies in order to use critical path analysis
Three types of Dependencies

- **Mandatory dependencies**: inherent in the nature of the work being performed on a project, sometimes referred to as hard logic.

- **Discretionary dependencies**: defined by the project team; sometimes referred to as soft logic and should be used with care since they may limit later scheduling options.

- **External dependencies**: involve relationships between project and non-project activities.
Network Diagrams

- Network diagrams are the preferred technique for showing activity sequencing.
- A network diagram is a schematic display of the logical relationships among, or sequencing of, project activities.
- Two main formats are the arrow and precedence diagramming methods.
Figure 6-2. Sample Activity-on-Arrow (AOA) Network Diagram for Project X

Note: Assume all durations are in days; A=1 means Activity A has a duration of 1 day.
Arrow Diagramming Method (ADM)

- Also called activity-on-arrow (AOA) network diagrams
- Activities are represented by arrows
- Nodes or circles are the starting and ending points of activities
- Can only show finish-to-start dependencies
Process for Creating AOA Diagrams

1. Find all of the activities that start at node 1. Draw their finish nodes and draw arrows between node 1 and those finish nodes. Put the activity letter or name and duration estimate on the associated arrow.

2. Continue drawing the network diagram, working from left to right. Look for bursts and merges. **Bursts** occur when a single node is followed by two or more activities. A **merge** occurs when two or more nodes precede a single node.

3. Continue drawing the project network diagram until all activities are included on the diagram that have dependencies.

4. As a rule of thumb, all arrowheads should face toward the right, and no arrows should cross on an AOA network diagram.
Precedence Diagramming Method (PDM)

- Activities are represented by boxes
- Arrows show relationships between activities
- More popular than ADM method and used by project management software
- Better at showing different types of dependencies
Figure 6-3. Task Dependency Types

Task dependencies

The nature of the dependencies between linked tasks. You link tasks by defining a dependency between their finish and start dates. For example, the "Contact caterers" task must finish before the start of the "Determine menus" task. There are four kinds of task dependencies in Microsoft Project:

<table>
<thead>
<tr>
<th>Task dependency</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish-to-start (FS)</td>
<td></td>
<td>Task (B) cannot start until task (A) finishes.</td>
</tr>
<tr>
<td>Start-to-start (SS)</td>
<td></td>
<td>Task (B) cannot start until task (A) starts.</td>
</tr>
<tr>
<td>Finish-to-finish (FF)</td>
<td></td>
<td>Task (B) cannot finish until task (A) finishes.</td>
</tr>
<tr>
<td>Start-to-finish (SF)</td>
<td></td>
<td>Task (B) cannot finish until task (A) starts.</td>
</tr>
</tbody>
</table>
Figure 6-4. Sample PDM Network Diagram

A
Start: 8/1/09 ID: 1
Finish: 8/1/09 Dur: 1 day
Res:

B
Start: 8/1/09 ID: 2
Finish: 8/2/09 Dur: 2 days
Res:

C
Start: 8/1/09 ID: 3
Finish: 8/3/09 Dur: 3 days
Res:

D
Start: 8/2/09 ID: 4
Finish: 8/7/09 Dur: 4 days
Res:

E
Start: 8/3/09 ID: 5
Finish: 8/9/09 Dur: 5 days
Res:

F
Start: 8/3/09 ID: 6
Finish: 8/8/09 Dur: 4 days
Res:

G
Start: 8/6/09 ID: 7
Finish: 8/13/09 Dur: 6 days
Res:

H
Start: 8/10/09 ID: 8
Finish: 8/17/09 Dur: 6 days
Res:

I
Start: 8/14/09 ID: 9
Finish: 8/15/09 Dur: 2 days
Res:

J
Start: 8/20/09 ID: 10
Finish: 8/22/09 Dur: 3 days
Res:
Before estimating activity durations, you must have a good idea of the quantity and type of resources that will be assigned to each activity; resources are people, equipment, and materials.

Consider important issues in estimating resources:
- How difficult will it be to do specific activities on this project?
- What is the organization’s history in doing similar activities?
- Are the required resources available?

A resource breakdown structure is a hierarchical structure that identifies the project’s resources by category and type.
Activity Duration Estimating

- **Duration** includes the actual amount of time worked on an activity *plus* elapsed time.
- **Effort** is the number of workdays or work hours required to complete a task.
- Effort does not normally equal duration.
- People doing the work should help create estimates, and an expert should review them.
Three-Point Estimates

- Instead of providing activity estimates as a discrete number, such as four weeks, it’s often helpful to create a **three-point estimate**
 - An estimate that includes an optimistic, most likely, and pessimistic estimate, such as three weeks for the optimistic, four weeks for the most likely, and five weeks for the pessimistic estimate
- Three-point estimates are needed for PERT and Monte Carlo simulations
Developing the Schedule

- Uses results of the other time management processes to determine the start and end date of the project.
- Ultimate goal is to create a realistic project schedule that provides a basis for monitoring project progress for the time dimension of the project.
- Important tools and techniques include Gantt charts, critical path analysis, and critical chain scheduling, and PERT analysis.
Gantt Charts

- **Gantt charts** provide a standard format for displaying project schedule information by listing project activities and their corresponding start and finish dates in a calendar format.

- **Symbols include:**
 - Black diamonds: milestones
 - Thick black bars: summary tasks
 - Lighter horizontal bars: durations of tasks
 - Arrows: dependencies between tasks
Figure 6-5. Gantt Chart for Project X

Note: Darker bars would be red in Project 2007 to represent critical tasks.
Figure 6-6. Gantt Chart for Software Launch Project

- WBS hierarchy shown by indentations
- Summary task
- Milestone
- Individual task bar
- Arrows show dependencies
Adding Milestones to Gantt Charts

- Many people like to focus on meeting milestones, especially for large projects.
- Milestones emphasize important events or accomplishments on projects.
- Normally create milestone by entering tasks with a zero duration, or you can mark any task as a milestone.
SMART Criteria

- Milestones should be:
 - Specific
 - Measurable
 - Assignable
 - Realistic
 - Time-framed
Best Practice

Schedule risk is inherent in the development of complex systems. Luc Richard, the founder of www.projectmangler.com, suggests that project managers can reduce schedule risk through project milestones, a best practice that involves identifying and tracking significant points or achievements in the project. The five key points of using project milestones include the following:

1. Define milestones early in the project and include them in the Gantt chart to provide a visual guide.
2. Keep milestones small and frequent.
3. The set of milestones must be all-encompassing.
4. Each milestone must be binary, meaning it is either complete or incomplete.
5. Carefully monitor the critical path.
Figure 6-7. Sample Tracking Gantt Chart

- **Planned dates**
- **Actual dates**
- **Slipped milestone**
Critical Path Method (CPM)

- **CPM** is a network diagramming technique used to predict total project duration.
- A **critical path** for a project is the series of activities that determines the *earliest time* by which the project can be completed.
- The critical path is the *longest path* through the network diagram and has the least amount of slack or float.
- **Slack** or **float** is the amount of time an activity may be delayed without delaying a succeeding activity or the project finish date.
Calculating the Critical Path

- First develop a good network diagram
- Add the duration estimates for all activities on each path through the network diagram
- The longest path is the critical path
- If one or more of the activities on the critical path takes longer than planned, the whole project schedule will slip unless the project manager takes corrective action
Figure 6-8. Determining the Critical Path for Project X

Note: Assume all durations are in days.

Path 1: A-D-H-J Length = 1+4+6+3 = 14 days
Path 2: B-E-H-J Length = 2+5+6+3 = 16 days
Path 3: B-F-J Length = 2+4+3 = 9 days
Path 4: C-G-I-J Length = 3+6+2+3 = 14 days

Since the critical path is the longest path through the network diagram, Path 2, B-E-H-J, is the critical path for Project X.
More on the Critical Path

- A project team at Apple computer put a stuffed gorilla on the top of the cubicle of the person currently managing critical task
- The critical path is *not* the one with all the critical activities; it only accounts for time
 - Remember the example of *growing grass* being on the critical path for Disney’s Animal Kingdom
- There can be more than one critical path if the lengths of two or more paths are the same
- The critical path can change as the project progresses
Using Critical Path Analysis to Make Schedule Trade-offs

- **Free slack** or **free float** is the amount of time an activity can be delayed without delaying the early start of any immediately following activities.
- **Total slack** or **total float** is the amount of time an activity may be delayed from its early start without delaying the planned project finish date.
- A **forward pass** through the network diagram determines the early start and finish dates.
- A **backward pass** determines the late start and finish dates.
Figure 6-9. Calculating Early and Late Start and Finish Dates

Legend:
- ES = early start
- EF = early finish
- LS = late start
- LF = late finish

Diagram:
- Start
- A = 5
- B = 10
- C = 7
- ES EF
- LS LF

Timeline:
- 0 5
- 5 10
- 10 17
- 0 0
- 0 10
- 10 17
Table 6-1. Free and Total Float or Slack for Project X

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Start</th>
<th>Finish</th>
<th>Late Start</th>
<th>Late Finish</th>
<th>Free Slack</th>
<th>Total Slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8/3/09</td>
<td>8/3/09</td>
<td>8/5/09</td>
<td>8/5/09</td>
<td>0d</td>
<td>2d</td>
</tr>
<tr>
<td>B</td>
<td>8/3/09</td>
<td>8/4/09</td>
<td>8/3/09</td>
<td>8/4/09</td>
<td>0d</td>
<td>0d</td>
</tr>
<tr>
<td>C</td>
<td>8/3/09</td>
<td>8/5/09</td>
<td>8/5/09</td>
<td>8/7/09</td>
<td>0d</td>
<td>2d</td>
</tr>
<tr>
<td>D</td>
<td>8/4/09</td>
<td>8/7/09</td>
<td>8/6/09</td>
<td>8/11/09</td>
<td>2d</td>
<td>2d</td>
</tr>
<tr>
<td>E</td>
<td>8/5/09</td>
<td>8/11/09</td>
<td>8/5/09</td>
<td>8/11/09</td>
<td>0d</td>
<td>0d</td>
</tr>
<tr>
<td>F</td>
<td>8/5/09</td>
<td>8/10/09</td>
<td>8/14/09</td>
<td>8/17/09</td>
<td>7d</td>
<td>7d</td>
</tr>
<tr>
<td>G</td>
<td>8/6/09</td>
<td>8/13/09</td>
<td>8/10/09</td>
<td>8/17/09</td>
<td>0d</td>
<td>2d</td>
</tr>
<tr>
<td>H</td>
<td>8/12/09</td>
<td>8/19/09</td>
<td>8/12/09</td>
<td>8/19/09</td>
<td>0d</td>
<td>0d</td>
</tr>
<tr>
<td>I</td>
<td>8/14/09</td>
<td>8/17/09</td>
<td>8/18/09</td>
<td>8/19/09</td>
<td>2d</td>
<td>2d</td>
</tr>
<tr>
<td>J</td>
<td>8/20/09</td>
<td>8/24/09</td>
<td>8/20/09</td>
<td>8/24/09</td>
<td>0d</td>
<td>0d</td>
</tr>
</tbody>
</table>
Using the Critical Path to Shorten a Project Schedule

- Three main techniques for shortening schedules
 - Shortening durations of critical activities/tasks by adding more resources or changing their scope
 - **Crashing** activities by obtaining the greatest amount of schedule compression for the least incremental cost
 - **Fast tracking** activities by doing them in parallel or overlapping them
Importance of Updating Critical Path Data

- It is important to update project schedule information to meet time goals for a project.
- The critical path may change as you enter actual start and finish dates.
- If you know the project completion date will slip, negotiate with the project sponsor.
Critical Chain Scheduling

- Critical chain scheduling
 - A method of scheduling that considers limited resources when creating a project schedule and includes buffers to protect the project completion date

- Uses the Theory of Constraints (TOC)
 - A management philosophy developed by Eliyahu M. Goldratt and introduced in his book *The Goal*

- Attempts to minimize multitasking
 - When a resource works on more than one task at a time
Figures 6-10a and 6-10b. Multitasking Example

Without multitasking:
- Task 1 completed after 10 days
- Task 2 completed after 20 days
- Task 3 completed after 30 days

With multitasking:
- Task 1 completed after 20 days
- Task 2 completed after 25 days
- Task 3 completed after 30 days
Buffers and Critical Chain

- **Buffer** is additional time to complete a task
- **Murphy’s Law** states that if something can go wrong, it will
- **Parkinson’s Law** states that work expands to fill the time allowed
- In traditional estimates, people often add a buffer to each task and use it if it’s needed or not
- Critical chain scheduling removes buffers from individual tasks and instead creates:
 - **Project buffers** or additional time added before the project’s due date
 - **Feeding buffers** or additional time added before tasks on the critical path
Figure 6-11. Example of Critical Chain Scheduling

Critical chain

X = Tasks done by limited resource
FB = Feeding buffer
Program Evaluation and Review Technique (PERT)

- **PERT** is a network analysis technique used to estimate project duration when there is a high degree of uncertainty about the individual activity duration estimates.

- PERT uses **probabilistic time estimates**
 - Duration estimates based on using optimistic, most likely, and pessimistic estimates of activity durations, or a three-point estimate.
PERT Formula and Example

- PERT weighted average = \(\frac{\text{optimistic time} + 4 \times \text{most likely time} + \text{pessimistic time}}{6} \)

- Example:
 PERT weighted average = \(\frac{8 \text{ workdays} + 4 \times 10 \text{ workdays} + 24 \text{ workdays}}{6} = 12 \text{ days} \)

 where optimistic time = 8 days
 most likely time = 10 days, and
 pessimistic time = 24 days

Therefore, you’d use 12 days on the network diagram instead of 10 when using PERT for the above example
Schedule Control Suggestions

- Perform reality checks on schedules
- Allow for contingencies
- Don’t plan for everyone to work at 100% capacity all the time
- Hold progress meetings with stakeholders and be clear and honest in communicating schedule issues
Controlling the Schedule

- Goals are to know the status of the schedule, influence factors that cause schedule changes, determine that the schedule has changed, and manage changes when they occur.

- Tools and techniques include:
 - Progress reports
 - A schedule change control system
 - Project management software, including schedule comparison charts like the tracking Gantt chart
 - Variance analysis, such as analyzing float or slack
 - Performance management, such as earned value (Chapter 7)
Reality Checks on Scheduling

- First review the draft schedule or estimated completion date in the project charter
- Prepare a more detailed schedule with the project team
- Make sure the schedule is realistic and followed
- Alert top management well in advance if there are schedule problems
Working with People Issues

- Strong leadership helps projects succeed more than good PERT charts
- Project managers should use:
 - Empowerment
 - Incentives
 - Discipline
 - Negotiation
What Went Right?

- Mittal Steel Poland earned Poland’s Project Excellence Award in 2007 for implementing a SAP system.
- Derek Prior, research director at AMR Research, identified three things the most successful SAP implementation projects do to deliver business benefits:
 ◦ Form a global competence centre
 ◦ Identify super-users for each location
 ◦ Provide ongoing involvement of managers in business processes so they feel they own these processes.
Using Software to Assist in Time Management

- Software for facilitating communications helps people exchange schedule-related information
- Decision support models help analyze trade-offs that can be made
- Project management software can help in various time management areas
Words of Caution on Using Project Management Software

- Many people misuse project management software because they don’t understand important concepts and have not had training.
- You must enter dependencies to have dates adjust automatically and to determine the critical path.
- You must enter actual schedule information to compare planned and actual progress.
Chapter Summary

- Project time management is often cited as the main source of conflict on projects, and most IT projects exceed time estimates.

- Main processes include:
 - Define activities
 - Sequence activities
 - Estimate activity resources
 - Estimate activity durations
 - Develop schedule
 - Control schedule