Placing a Digital Meter in Circuits
Series Circuits

\[V_s \quad R_1 \quad R_2 \quad R_3 \]
Measure Total Resistance, R_T

Make sure the power is removed from the circuit when measuring resistance! \[3 + 5 + 3 = 11 \, \Omega \]
Measure Resistance of R_1

Remember; always open the circuit when measuring resistance. This means remove one lead of the resistor from the circuit.
Measure Resistance of R2

Remember; you do not have to worry about the meter’s lead polarity when measuring resistance.
Measure Resistance of R_3

You can place the open on either side of the resistor you are measuring.
Series Circuit with Polarities

Many times it is helpful to mark the polarities around the circuit. This works whether you are using electron or the conventional current flow.
Measure Voltage Source, V_S

Notice the polarity of the meter leads.
Measure Voltage across Resistor 1, V_{R1}

5 V

1.3636 V
Measure Voltage across Resistor 2, V_{R2}
Measure Voltage across Resistor 3, V_{R3}

Pay attention to the polarity of the probes.

5 V

1.3636 V

2.2727 V

1.3636 V
Measure Total Current, I_T

You must open the circuit to place the meter. Notice the polarity of the meter leads.

\[\text{.4545A, 454.5mA} \]
Measure Current through R_1, I_{R1}

You can place the meter on either side of the resistor. Notice the polarity of the meter leads are opposite from where they would be measuring voltage.

$.4545\text{A, 454.5mA}$
Measure Current through R_1, I_{R1}

You can place the meter on either side of the resistor. Notice the polarity of the meter leads are opposite from where they would be measuring voltage.

$.4545A, 454.5mA$
Measure Current through R_2, I_{R2}

Notice the polarity of the meter leads are opposite from where they would be measuring voltage.

$5.0V$

3Ω

$.4545A$, $454.5mA$
Measure Current through R_3, I_{R3}

You can place the meter on either side of the resistor. Current stays the same in a Series Circuit.
Parallel Circuits
Measure the Resistance of R_1

Make sure power is off and you open the circuit in the branch of R_1.
Measure the Resistance of R_2

Make sure power is off and you open the circuit in the branch of R_2.

10kΩ
Measure the Resistance of R_3

Make sure power is off and you open the circuit in the branch of R_2.
Measure Total Resistance, R_T

Make sure power is off and you open the circuit.
Measure the Voltage across R_1, V_{R1}
Measure the Voltage across R_2, V_{R2}
Measure the Voltage across R_3, V_{R3}
Measure Total Supply or Source Voltage, \(V_T \) or \(V_s \)
Measure Current flowing through R_1, I_{R1}

Make sure polarity is observed and you open the circuit and place the meter in series with the branch.
Measure Current flowing through R_2, I_{R2}

Make sure polarity is observed and you open the circuit and place the meter in series with the branch.
Measure Current flowing through R_3, I_{R3}

Make sure polarity is observed and you open the circuit and place the meter in series with the branch.
Measure Total Current, I_T

Make sure polarity is observed and you open the circuit and place the meter in series with the branch.
The End

Produced and Edited by:
Cleveland Institute of Electronics Instructors

© Copyright 2011 Cleveland Institute of Electronics
All Rights Reserved / May 2011